Counting Homomorphisms to Trees Modulo a Prime
نویسندگان
چکیده
Many important graph theoretic notions can be encoded as counting graph homomorphism problems, such as partition functions in statistical physics, in particular independent sets and colourings. In this article we study the complexity of #pHomsToH, the problem of counting graph homomorphisms from an input graph to a graph H modulo a prime number p. Dyer and Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homomorphisms depends on the structure of the input graph. Many intractable cases in non-modular counting become tractable in modular counting due to the common phenomenon of cancellation. However, in subsequent studies on counting modulo 2 the influence, the structure ofH has on the tractability, was shown to persist, yielding similar dichotomies. Our main result shows that for every tree H and every prime p the problem #pHomsToH is either polynomial time computable or #pP-complete. This addresses the conjecture of Faben and Jerrum stating this dichotomy for every graph H when counting modulo 2. In order to prove this result, we study the structural properties of a homomorphism. As an important interim, this study yields a dichotomy for the problem of weighted counting independent sets in a bipartite graph modulo some prime p. Our results are the first suggesting that such dichotomies hold not only for the one-bit functions of the modulo 2 case but for the modular counting functions of all primes p.
منابع مشابه
Counting modulo Quantiiers on Nite Structures
We give a combinatorial method for proving elementary equivalence in rst-order logic FO with counting modulo n quantiiers D n. Inexpressibility results for FO(D n) with built-in linear order are also considered. For instance, the class of linear orders of length divisible by n + 1 cannot be expressed in FO(D n). Using this result we prove that comparing cardinalities or connectivity of ordered ...
متن کاملHomotopy Properties of Thom Complexes
Introduction 2 1. Thom Spaces 3 1.1. G-framed submanifolds. Classes of L-equivalent submanifolds 3 1.2. Thom spaces. The classifying properties of Thom spaces 4 1.3. The cohomologies of Thom spaces modulo p for p > 2 6 1.4. Cohomologies of Thom spaces modulo 2 8 1.5. Diagonal Homomorphisms 11 2. Inner Homology Rings 13 2.1. Modules with One Generator 13 2.2. Modules over the Steenrod Algebra. T...
متن کاملEssentially Retractable Modules
We call a module essentially retractable if HomR for all essential submodules N of M. For a right FBN ring R, it is shown that: (i) A non-zero module is retractable (in the sense that HomR for all non-zero ) if and only if certain factor modules of M are essentially retractable nonsingular modules over R modulo their annihilators. (ii) A non-zero module is essentially retractable if and on...
متن کاملIdeal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملCounting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices
We present a framework for the complexity classification of parameterized counting problems that can be formulated as the summation over the numbers of homomorphisms from small pattern graphs H1, . . . ,H` to a big host graph G with the restriction that the coefficients correspond to evaluations of the Möbius function over the lattice of a graphic matroid. This generalizes the idea of Curticape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.06103 شماره
صفحات -
تاریخ انتشار 2018